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EXECUTIVE SUMMARY 
 

The Batteries Europe / BEPA Task Force on Digitalisation leveraged the activities of the Batteries 

Europe Working Groups to define the digitalisation agenda for batteries in Europe that was included 

in the Batteries Strategic Research Agenda.   

Digital technologies are not a direct objective but an important enabler to achieve the development 

of innovative new services, the so called applications or use cases, leveraging technologies like digital 

twins, artificial intelligence (AI) and machine learning (ML), computer-aided design (CAD), data science, 

advanced modelling, 5G, blockchain or the battery passport that can deliver significant measurable 

benefits: saving costs, increasing revenues and setting up new business models, all contributing to 

achieve socio-economic benefits. 

The current position paper presents some of these advanced technologies that could make a difference 

for the batteries industry. It illustrates these innovative technologies for the battery industry in the 

domains of engineering & design, manufacturing, maintenance, exploitation and recycling.  

The native design of the battery hardware leveraging the digital technologies and continuous 

monitoring and control will enable the industry to optimise the state of multiple KPIs called SoX, like 

State-of-Health (SoH), State-of-Charge (SoC), State-of-Energy (SoE), State-of-Power (SoP), and the 

innovative concept of State-of-Safety (SoS) monitoring tools in battery management systems (BMS).  

In conclusion, this report summarises recommendations for the central topics addressed within this 

position paper. These serve as guidelines for enabling advancement in the related technology domains 

across the whole value chain, targeting a wide range of stakeholders (s. section 5). 
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1. INTRODUCTION 
 

Digital technologies have been used within energy systems for decades. The energy sector was one of 
the early adopters of large information and communication technology systems (ICT). Already in the 
1970s, electric utilities used information and communication technology to aid the management of 
the transmission and distribution system. Many electricity markets around the world are monitored 

and controlled in real-time across large customer bases and geographic areas. Likewise, oil and gas 
companies have a long history of using digital technologies to aid exploration and production efforts. 
Similarly, a variety of industries have used process controls and automation to optimise energy use. 
Digital technologies have long been used across transportation modes to improve safety and increase 

energy efficiency. It is now a must have technology for electric cars to manage their batteries, and the 
same stands for stationary batteries that should integrate with the assets, such as buildings, 

renewables and electricity networks.  

Blockchain, artificial intelligence (AI), machine learning (ML) and generative AI are digital technologies 

that are undergoing rapid development today and have the potential to bring disruptive changes to 

the energy landscape. Blockchain technology presents an exciting opportunity for decentralised energy 
environments to enable, validate, record, and settle energy transactions in real-time. Blockchain is a 

distributed digital ledger built on a decentralised transaction verification system; this framework could 
enable peer-to-peer transactions, where neighbours transact directly with each other, and trade 

energy generated from their rooftop solar panels and electric vehicles through the grid. These 

technologies play a major role in making batteries effective with an optimal lifecycle and payback 

cycles.   

The EU Green Deal1 and the digitalisation of the European economy, specifically the European energy 

system2, will be important new priorities of the European Commission. Moreover, by 2050, 

renewables’ share could reach as much as 87% in the electricity mix, with wind and solar energy playing 
a dominant role. Cheap renewables, flexible demand and battery storage will be digitally combined to 

shift the European power system away from fossil fuels and nuclear power to a cleaner society around 
variable renewables and emissions-free energy.  

This shift in the energy transition will be enabled by smart digital technologies. Digital technologies will 

optimise the value that battery storage systems can bring to the energy markets, thereby enabling 
opportunities for new energy stakeholders, creating a new generation of jobs for the circular economy, 

and bring Europe to the forefront of leadership in the fight against climate change.  

The development of digital technologies is required to improve the industrialisation of new batteries 

and shorten the time to market. The design of machine learning algorithms will accelerate the 
discovery of materials and the development of AI-orchestrated characterisation of battery materials 
and battery cells. Combining computer-aided engineering tools and experimental measurements will 
help to understand and predict the performance of batteries.  

These technologies will continue to evolve more rapidly than the time required for the transformation 
within the mobility, storage and battery industries.  

This position paper serves as an update to the last one published in 20213 and focusses on recent 
technological aspects such as common infrastructure, data shapes and ontologies, digital twins, 

advanced modelling and state monitoring (SoX). 

Therefore, it describes yet another step in the journey of an innovation-intense batteries industry. 
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2. COMMON INFRASTRUCTURE, DATA SHAPES AND 

ONTOLOGIES 
 

As a complex domain, battery research highly relies on agreed terminologies and standards. Beyond 

fundamental science (e.g., chemistry, physics, etc.), this was historically provided merely by verbal 

communications and lack of a global referenceable standards. Recent activities at national (e.g., 

German Battery Clusters) and European level (Battery2030+, LiPLANET, BIG-MAP) address this issue, 

for example by providing an interactive data space4,5, a common knowledge base6 and battery related 

ontologies7,8. However, to date, those initiatives have included only a small fraction of data produced 

by the research community. To generate a significant impact, they should be extended to a broad 

established framework and build a common battery knowledge graph consisting of linked and 

machine-readable self-descriptions of digital assets, providing domain knowledge, terminologies, 

tools, data shapes, etc. 

To do so, it is important to acknowledge that ontologies, while being the technical foundation, will 

not serve as a direct interface to the general community. Instead, ontologies should be mapped onto 

pragmatic and real-world-reflecting data shapes, addressing both general (e. g. hierarchical 

description of a battery module down to materials) and specific needs within the domains (e. g. 

definition of a cycling procedure or electrochemical simulation input and output data). Accessibility 

to a growing collection of those linked data shapes can be achieved by auto-generating specific end 

user interface from those data shapes9. 

By fulfilling not only data experts but also end users’ needs, aligned ontologies, derived data shapes 

and generated interfaces are critical for upcoming data space initiatives, such as Catena-X10, which 

allow them to be effectively populated with content from a large community and enable data 

scientists, AI and simulation experts to provide shared digital services based on shared interoperable 

data. 

Linking explicit machine-readable knowledge with experimental data in common battery data spaces 

will also serve as a basis for hybrid models to consider not only statistical and physical models, but 

also machine-readable expert knowledge. Likewise, machine-readable and consistent knowledge in 

form of process and material definitions will facilitate the application of sustainability evaluation 

tools, such as for Life Cycle Assessment (LCA), Digital Product Passports (DPP) and chains of custody. 

In consequence, implementing sophisticated semantic data and knowledge infrastructure will not 

only enable advanced internal process management and optimization, but also compliance with 

external regulations without additional costs. 

LCA is a standardised methodology that has become the consensual tool of choice to assess the 

potential environmental impacts of products and processes throughout their life cycle. Although it is 

standardised by ISO 14040:2006 / ISO 14044:2006 and there are product environmental footprint 

category rules (PEFCR) for rechargeable batteries proposed by The Advanced Rechargeable & Lithium 

Batteries Association (RECHARGE), many assumptions are needed and different methods can be 

employed to quantify the environmental impacts. These facts increase the uncertainties of the results 

of environmental impact and hinder the comparison between different types of products. In this 

sense, there is a need for higher amounts and reliable primary data to support more robust LCA 

studies. Moreover, PEFCR should be developed and extended, not only for the battery as a product 
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on the system level, but also for its components and materials, e.g. data on the recycling of battery 

components like active materials and electrolytes. Additionally, considering a wide variety of output 

materials and different process technology readiness levels, a more consistent and ontology-based 

methodological approach should be developed for levelled comparison of the environmental impacts 

of different recycling processes. Furthermore, in the same way that environmental impacts are 

assessed using LCA methodology, economic and social impacts must also be assessed in life cycle 

thinking (LCT) perspectives, using the life cycle costing (LCC) and social life cycle assessment (s-LCA) 

methodologies[1].   

However, there are still significant questions regarding available data, in particular externalities costs 

and social data information.  

For achieving interoperability of LCA standards (e.g. process flows and material exchange definitions) 
with material science and process engineering standards, the following actions are recommended:  

• Use of the same ontology in the LCA documents for both chemical aspects at cell level and 
engineering/production process domain (e.g., carbon dioxide vs. CO2).  
 

• Implement the digital passport[2] also for battery materials and parts within the supply chain, 
particularly in recycling materials. Develop a common ontology for battery passport (and 
digital twins) based on existing ontologies like the Battery Interface Ontology (BattINFO11) and 
Battery Value Chain Ontology (BVCO12). 
 

• Development of a Life Cycle Inventory (LCI) database, or LCI datasets, specifically intended to 

be used in the development of LCA studies or in the creation of DPPs. To ensure the 

representativeness of the LCA and sustainability studies carried out based on this data, 

specific data transfer and storage formats must be defined, considering the information that 

must be provided and how it must be obtained. Moreover, specific measures should be taken 

to protect sensitive information, for example intellectual property or business information, 

using protocols such as blockchain or others created specifically for battery systems. In 

addition, data formats should facilitate the assessment of environmental impacts, based on 

existing or future product category rules (PCR) or methodologies created for DPPs. Efforts 

should be made to ensure that all data is open source and can be incorporated into existing 

or future open source LCI databases, of general nature such as the environmental footprint 

database13 or tailor-made for battery systems. Future LCI databases should be updated 

periodically and allow for the submission of new data, considering the applicable data 

formats. This aspect is relevant for small and medium-sized companies, for whom carrying an 

LCA study and/or developing DPPs can represent an excessive expenditure of resources.  

 
[1] more information on LCA and s-LCA provided in position paper of Task Force Sustainability: 
https://batterieseurope.eu/workstream-bodies/cross-cutting-task-forces/ 
[2] see also position paper of Task Force Sustainability: https://batterieseurope.eu/workstream-
bodies/cross-cutting-task-forces/  

https://batterieseurope.eu/workstream-bodies/cross-cutting-task-forces/
https://batterieseurope.eu/workstream-bodies/cross-cutting-task-forces/
https://batterieseurope.eu/workstream-bodies/cross-cutting-task-forces/
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3. ADVANCED MODELLING FOR ACCELERATED BATTERY 

DEVELOPMENT 
 

The battery sector is growing very rapidly and to remain competitive, companies need to accelerate 

their development efforts and reduce the time-to-market. Digital technologies can be a key enabler 

for the industry, also thanks to the ever-growing availability of computational resources and the 

continuous advances in modelling, coming from the scientific community. Advanced modelling and 

digital technologies can provide valuable support in different phases of the battery development 

process, but also during the deployment phase, targeting the optimisation of the entire battery value 

chain. Starting from the material level, automated discovery and design of battery materials can be a 

key enabler for the development of innovative energy storage technologies and for the continuous 

improvement of the currently consolidated chemistries. Advanced multiphysics-multiscale models 

are also crucial to support the development and design of battery cells and systems for emerging 

battery technologies. Battery development currently still requires complex, time-consuming and 

expensive testing. Digital tools can be used to minimise the need of physical testing, integrating virtual 

testing in the standard development process to evaluate battery performance, lifespan, reliability, 

and safety. Advanced modelling can also be used to design and optimise new recycling processes and 

additionally to evaluate how these processes can deal with the upcoming battery chemistries. Finally, 

digital tools can support the optimisation of the entire battery value chain and logistics, linking all 

steps, from raw material extraction to end-of-life (EOL), to ensure the lowest environmental impact 

and reduce total costs.  

Adopting an open-source software approach to the development of these digital solutions will ensure 

scalability, flexibility and, above all, adaptability to different battery technologies, greatly benefitting 

the European Battery Industry. 

 

3.1 Automated discovery and design of battery materials  
 

The integration of automated discovery in battery development via high-throughput experimentation 

and advanced modelling has emerged as a key enabler in developing novel energy storage 

technologies. These methods allow for a more expedited development process, while at the same time 

contributing to the reduction of R&D costs and in obtaining superior battery performance14,15. This 

section aims to explore how these methodologies have been developed within the framework of the 

current EU initiatives and sets the expectations for the upcoming years, aligning with the vision and 

strategic objectives outlined in the Battery 2030+ roadmap16.  

High-throughput experimentation (HTE) allows for the simultaneous screening, synthesis and 

characterisation of large arrays of different material classes, which can lead to the identification of 

lead candidates for given systems and targeted applications17,18.Computational modelling, 

encompassing electronic structure calculations, atomistic and molecular simulations, continuum 

modelling, and data-driven and predictive modelling, enables a comprehensive exploration of 

electrochemical, mechanical, thermal and structural properties of battery materials19,20,21. Over the 

recent years this approach has accelerated the ability to explore and optimise battery design, 
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expediting the research process and opening new pathways for innovation in battery technologies12. 

Furthermore, machine learning and artificial intelligence are emerging as enablers to create faster and 

more accurate models with improved prediction accuracy, better generalisation to new conditions and 

the ability to incorporate complex battery behaviours. 

The BIG-MAP project22, under the Battery 2030+ initiative roadmap23, currently represents the largest 

effort in developing an automated ecosystem for chemistry and technology-neutral battery material 

discovery. Within BIG-MAP, the materials acceleration platform (MAP) focuses on the autonomous 

acquisition, handling and analysis of comprehensive data sets, encompassing the full spectrum of the 

battery development cycle. In conjunction with MAP, the battery interface genome (BIG) initiative 

focuses on understanding critical battery processes happening at the interfaces, such as charge 

transfer reactions, dendrite formation, solid electrolyte interphase formation, and cathode–

electrolyte interface development. Building upon the foundational work of MAP, BIG seeks to establish 

a comprehensive understanding of these interface-related processes, which are vital for the 

functioning of all batteries.  

Additional EU initiatives with a narrower focus include the SONAR and OPERA24 projects. The former 

aims to establish a framework for evaluating electroactive materials suitable for aqueous and non-

aqueous redox flow batteries. This will involve a multiscale modelling approach that enhances and 

connects simulation methods across different scales through a blend of physics and data-driven 

modelling. The OPERA project aims to revolutionise solid-state batteries by developing new operando 

techniques and multiscale modelling strategies. These efforts are focused on understanding and 

optimising the interfaces within these batteries, with the aim of achieving zero-excess energy storage.  

Beyond the EU initiatives, there is a significant global effort directed towards the development of 

computational techniques to understand and develop new battery technologies.  

The advancement of HTE in battery research is increasingly characterised by an interplay between 

automated processes and computational models. Central to this is the accelerated experimental 

design of anodes, cathodes and solid electrolytes for Lithium and beyond Lithium batteries. This 

approach is crucial for assessing extensive candidate lists derived from combinatorial studies and for 

enhancing the robustness of machine learning models25. Complementary to this trajectory is the 

advent of MAPs, which combine AI, robotics and computing. These platforms expedite the 

experimentation process, although they are still navigating the complexities of achieving full 

autonomy26. 

The effective utilisation of the data generated from these technologies is a critical aspect, necessitating 

the integration of AI/ML algorithms. This integration is essential for enhancing decision-making 

processes in the development of battery materials, streamlining the journey from theoretical models 

to practical applications15. The role of AI/ML in this domain is recognised for its transformative 

potential. It is not just about accelerating research but also about making these tools accessible and 

applicable across various research contexts27. 

The global response to environmental and material challenges underscores the urgency of accelerated 

discovery in battery research. MAPs are at the forefront of this endeavour, advocating for a 

collaborative approach across industries and borders. Such collaboration is vital to achieve sustainable 

solutions, aligning technological advancements with the global imperative for environmental 

sustainability and resource efficiency28.  
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3.2 Cell and battery design for emerging battery technologies  
 

The battery sector is evolving very rapidly due to the large demand for batteries for both mobility and 

stationary applications. In this context, upcoming and emerging battery technologies will play an 

important role, enabling to diversify the supply of the needed materials and achieving the targeted 

costs and performances needed for each application sector. The availability of validated models and 

software tools is crucial to accelerate the technology development and reduce the time-to-market for 

these new battery technologies.  

 

Models and software for lithium-ion battery (LIB) design and optimisation from cell to battery pack are 

currently commonly used and readily available with both commercial and open-source options, e.g., 

COMSOL29, Ansys Fluent30, PyBaMM31, BattMo32, cideMOD33. However, validated models and tools for 

upcoming and emerging battery technologies such as redox flow batteries (excluding vanadium redox 

flow battery), solid-state batteries, metal-air and metal-sulphur are still missing. For each battery 

technology, the required activities concern:  

• The development of multiphysics mathematical models of increasing complexity to reproduce 

the physical phenomena affecting the cell performances; 

• The implementation of the models in state-of-the-art computational tools; 

• Model validation based on accurate and complete experimental datasets.  

Each of these activities is crucial to ensure that the European battery industry has the needed tools to 

build better and lower cost storage technologies. 

Battery models need to take into account several physical phenomena (chemical, electrical, thermal, 

mechanical) and their interactions which happen at different scales, from electrode to the system 

level. Each scale requires different modelling approaches that can be integrated into a multiscale 

modelling tool optimising this way the overall battery design. The core component of such a tool would 

be a continuum-scale multiphysics model for battery cell that can also be used to develop battery 

packs/stacks (either directly or indirectly through model order reduction).  

The integration of such models in open source tools would greatly benefit the whole battery industry 

and community, also removing the cost barriers that can limit small companies in getting access to 

validated tools from commercial providers. The use of state-of-art open source computational 

software, such as those developed in Python, OpenFOAM, FEniCS and MATLAB, will ensure scalability, 

flexibility and most of all the adaptability to different battery technologies. The long-term target would 

be an integrated multiscale tool that could address the different industry needs. Streamlining the 

development efforts of the European scientific community into a single direction of an open multi-

technology battery toolkit serving our European battery industry could bring important benefits in the 

long run. 

 

3.3 Virtual battery testing 
 

The current approach to battery development primarily relies on trial-and-error methods, which are 

time-consuming and expensive, and do not always yield optimal product designs. Existing methods 

and tools often incur high costs due to long test periods, the need for a large number of test samples, 
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and the utilisation of expensive testing infrastructure. However, there is a significant potential for 

enhancement by leveraging digital methods and tools to minimise reliance on traditional trial-and-

error processes to evaluate battery performance, lifespan, reliability, and safety. The digitalisation of 

battery testing will result in faster battery development, shorter time-to-market, enhanced evaluation 

of performance, lifespan, reliability, and safety and more accurate estimation of battery lifespan 

through improved modelling of battery aging and the use of digital twins. These advancements in 

battery testing will lead to substantial cost savings, particularly during the development phase. 

Recently, several initiatives have been funded by the EU to fill the existing gap, e.g., AccCellBaT34, 

THOR35, FASTEST36 and DigiBatt37. However, several challenges still need to be addressed. 

One of the main challenges concerns the development of virtual methods to reduce the complexity, 

costs and time related to testing from cell to system level. Integration of models (both physics-based 

and data-driven) with real data coming from physical testing at smaller scale or sub-component level 

will reinforce the prediction capabilities of these methods. Research is also needed on the 

standardisation of battery system testing & validation approaches focusing on the fusion of physical 

and virtual test methodologies. These approaches, combined with the development of simplified 

testing strategies, will make it possible to reduce the number of physical tests required and their 

complexity, while improving the safety and reliability of batteries. Finally, it is crucial to understand 

the impact of different operating loads, failure modes, ageing and misuse on battery reliability and 

safety of batteries and to highlight the dependencies between them in order to design the most 

adequate testing methods and parameters. 

 

3.4 Modelling tools for improved EOL, including sorting and recycling  
 

The transition towards a circular economy requires sustainable waste management to reduce its 

adverse impacts on the environment and human society. Such a management should close the product 

value chain to reduce the use of resources and raw materials, ensuring current and future access to 

these resources. This is strategically important for a secure and sustainable supply of critical raw 

materials to increase resilience and security of a society. In the context of batteries, the EU has already 

implemented appropriate measures (e.g., EU battery Regulation), to ensure the development of a 

sustainable circular value chain for batteries in Europe. In this regard, recycling plays a key role in 

closing the value chain of different battery technologies. In fact, the EU Battery Regulation establishes 

strict measures on the recycling efficiency of end-of-life batteries and the amount of recycled material 

to be used in manufacturing of new batteries. Therefore, great attention should be paid to developing 

recycling processes that comply with battery regulations, especially in view of the lack of established 

sustainable and economic recycling routes for current and next generation lithium-ion batteries, 

batteries based on new chemistries and other battery technologies such as redox flow batteries. In this 

regard, the use of models to bridge the gap in battery recycling is crucial to keep up with the increasing 

pace of technological change fostered by the influence of digitalisation in various fields. 

An interesting topic is the development of reliable physics-based models for chemical processes that 

have potential use in the recycling of batteries. These models can be used to assess the viability of the 

processes developed for new battery chemistries and technologies. In addition, they can facilitate the 

scale-up, optimization and control of chemical processes to achieve higher recycling efficiency, lower 

energy consumption and reduced CO2 emissions. For instance, the hydrometallurgical recycling route 
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for end-of-life Li-ion batteries relies on chemical steps such as leaching, liquid-liquid extraction and 

precipitation. And reliable models can facilitate the development or adaptation of these steps as new 

chemistries are introduced into the market. Focusing on the diversity of chemistries, promising 

modelling frameworks can be beneficial to evaluate the flexibility of a particular process to handle 

changes in the composition of feeds received by recycling plants. In addition to physics-based models, 

data-driven or hybrid approaches are needed to estimate the performance of those recycling steps for 

which a physical description is not yet available. 

Another topic of interest is the direct recycling of battery active materials, particularly for Li-ion 

batteries. Models, either physics-based or data-driven, can serve to predict the nature of degradation 

of active materials by examining the battery’s life history, possibly available through the battery 

passport, which is essential for successful direct reconditioning of active materials. 

Lastly, it is important to note that modelling tools for steps of recycling processes can be integrated 

into digital twins of recycling plants for the purpose of process control and optimized operation. 

 

3.5 Battery value chain optimisation 
 

In advancing our research approach within the battery research and industry, one of the main 

priorities is to bridge the gap between digital tools and the entire value chain, from raw material 

extraction to manufacturing, product utilization and eventual recycling. Traditionally, research has 

been compartmentalized into specific elements within the battery value chain, often overlooking the 

need for a holistic perspective. To achieve a comprehensive understanding, it is imperative to 

establish connections between these elements and integrate them into a larger framework. This 

integration necessitates interoperable data structures that facilitate connectivity between 

neighbouring domains and contribute to optimizing the entire value chain for sustainability (s. section 

2).  

Leveraging forward and reverse computer aided engineering techniques is crucial in this endeavour, 

allowing us to refine designs and processes iteratively. The application of digital product life cycle 

management serves as an aggregating concept, ensuring a seamless flow of information and insights 

throughout the entire life cycle.  
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4. DIGITAL TWINS 
 

4.1 Introduction 
 

The concept of the digital twin has gained significant attention since it was first mentioned in a NASA 

publication in 201038,39. Digital twin is understood in this chapter as a virtual representation or digital 

counterpart of a physical object, process, system or entity that incorporates real-time data and 

simulation capabilities, enabling it to accurately reflect the behaviour and changes of its physical 

counterpart over time.  

There are numerous examples that illustrate the versatility and wide-ranging applications of digital 

twins in various industries, demonstrating how they contribute to improving efficiency, decision 

making and overall performance.  In this context, core elements describing a digital twin are the 

physical world, the virtual world, and the flow of data between the physical asset and its virtual 

representation40. The quest of developing battery digital twins involves several technical advancements 

across various domains. Here are all key areas that should be considered in order to succeed in building 

robust and reliable DTs in the battery sector: 

• High-fidelity battery models: Develop advanced battery models that accurately represent the 

real assets, incorporating detailed physics to simulate battery manufacturing and performance 

under different operating conditions. 

 

• Real-time monitoring and diagnostics: Implement robust real-time monitoring systems to 

collect data on key battery parameters. Additionally, this implies the integration of 

sophisticated diagnostic algorithms capable of detecting early signs of degradation, faults, or 

abnormal behaviour. 

 

• Sensors and instrumentation: Explore and implement novel sensor technologies to enhance 

the granularity of data collection, capable of monitoring internal conditions within the whole 

battery value chain. 

 

• Data integration: Establish frameworks for seamless integration of data from various sources, 

including sensors, historical performance data, and external environmental factors. This 

should also include the implementation of data fusion techniques to create a comprehensive 

and accurate representation of real assets.  

 

• Machine learning algorithms: Utilise machine learning algorithms to analyse vast amounts of 

data and identify patterns. Then train models to predict future battery performance based on 

historical data and real-time input. 

 

• Cyber-physical systems integration: Integrate the digital twin with the physical assets through 

cyber-physical systems, enabling bidirectional communication and control. This might imply 

the establishment of secure communication protocols to ensure the reliability and integrity of 

data exchanged between the physical battery and its digital twin. 
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• Adaptive control strategies: Develop adaptive control strategies that leverage insights from 

the battery digital twin to optimise charging and discharging protocols in real-time. This would 

involve the implementation of algorithms that dynamically adjust operating parameters to 

maximise performance while minimising degradation. 

 

• User interface and visualisation tools: Design user-friendly interfaces and visualisation tools 

to enable users to interpret and interact with the digital twin. Such interfaces should then be 

able to provide actionable insights and recommendations for maintenance or operational 

adjustments based on the digital twin's analysis. 

 

• Continuous learning and improvement: Establish mechanisms for continuous learning and 

improvement, allowing the battery digital twin to adapt and evolve over time as new data and 

insights become available. 

 

• Integration of the digital twin in the company management system: The integration of the 

digital twin with other tools, as for example enterprise resource planning software or product 

life cycle management tools. This will allow a more effective practical utilisation of digital twin 

in practice, and even to incorporate economic and/or environmental parameters in it.  

Furthermore, this approach will enable leveraging the digital twin for supporting process 

improvement and optimisation, while also facilitating the comprehensive integration of 

batteries lifecycle into those processes 

 

 Here are additional considerations related to security, standards, and communication that are 

important to pay attention to while developing digital twins: 

• Digital twin validation: A key aspect when developing, implementing, and using in practice a 

digital twin is the question of how well it represents reality. Hence, special attention should be 

given to its validation, that should be based as much as possible on real life of the process 

operations, or from the stakeholders of the battery value chain. Questions of data quality 

and/or uncertainty should be addressed here when performing the validation. 

 

• Digital twin updating: As technology, regulations, strategies, and other relevant aspects 

directly related to the battery sector keep evolving, updates of the implemented digital twin 

are required from time to time. This can be an activity with a defined periodicity or done when 

it is required. In this updating process, data and/or information from the various stakeholders 

involved in the battery value chain should be used to ensure that the new iteration of the 

digital twin improves when compared do the previous one.  

 

• Communication protocols that facilitate communication between the physical object, sensors, 

and the digital twin. Common protocols include MQTT (Message Queuing Telemetry 

Transport), CoAP (Constrained Application Protocol), and HTTP (Hypertext Transfer Protocol). 

 

• Cybersecurity protocols and measures to protect the digital twin and the data it handles from 

unauthorised access, breaches, and cyber threats. The new protocols may be based on already 

existing data exchange and traceability, as for example blockchain, or specifically designed for 

battery systems. 
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• Adherence to industry standards and protocols to ensure interoperability, compatibility, and 

consistent data exchange between different digital twin implementations. 

  

The integration of these elements and considerations will ensure the creation of a robust, accurate, 

reliable and effective Digital Twin system, capable of providing valuable insights, optimising processes, 

and facilitating better decision-making. Additionally, addressing communication, security, and industry 

standards will enhance the reliability and trustworthiness of the digital twin environment. 

 

4.2 Implementation of digital twins in the battery value chain 
 

The digital twin concept is recognised as a pivotal element in the digitalisation era of the entire battery 

value chain. Thus, from the initial conception phase through the manufacturing process, where raw 

materials are transformed into cells meeting specified requirements, to the critical testing phase 

encompassing crucial steps such as formation and aging studies, the digital twin emerges as a vital 

method for accelerating the development phase. 

 

4.2.1 Battery cell manufacturing 
 

The scope of digital twins in battery cell production is very broad and can range from a digital twin of a 

building to a digital twin of a machine or asset, to a digital twin of a product (i.e. battery cell)41. Digital 

twins for buildings usually describe the building information model (BIM) and aggregate contents of 

environmental effects and dependencies such as energy consumption, logistic simulations and building 

automation for monitoring and control. This will enable building managers to make data-driven 

decisions and adjustments before the actual operation. On the other hand, digital twins for machines 

provide a dynamic and responsive representation of a manufacturing equipment, offering benefits such 

as adaptive processes, predictive maintenance, and overall operational optimisation. Furthermore, a 

digital twin of a product serves as a virtual representation that captures and integrates information 

throughout the entire production process42.  

The successful integration of digitalisation approaches in an automated production line holds the 

promise of significantly reducing the overall costs of battery cell production. By leveraging digital 

technologies such as internet of things (IoT) and AI/ML, manufacturers can streamline processes, 

optimise resource utilisation, and minimise waste, leading to increased efficiency and cost savings. 

Automation allows for precise control and monitoring of production parameters, resulting in higher 

quality output and fewer defects. Additionally, digitalisation enables real-time data analysis and 

predictive maintenance, helping to prevent costly downtime and equipment failures. Overall, the 

integration of digitalisation in battery cell production represents a key strategy for improving 

competitiveness and sustainability in the industry. 

 

4.2.2 Battery cell testing   
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The concept of a digital twins in cell testing follows a similar philosophy to other digital twin 

applications, such as digital twin manufacturing and state-of-health (SoH) estimation control. The 

primary focus is on leveraging virtual representations to accelerate and enhance the understanding of 

the performance of cells being tested in the laboratory. In this context, digital twins in cell testing will 

aim to accelerate the testing processes by providing a virtual environment where simulations and 

analyses will be performed, reducing the time required for physical testing and allowing for a more 

rapid iteration of experiments. Additionally, integrating real-time data from physical tests into the 

digital twin will enhance its accuracy and reliability and will give the opportunity to researchers to 

compare virtual predictions with actual test results. As a result, this will enable the improvement of 

the digital twin model over time.  

In essence, the digital twin concept in cell testing is a powerful tool for researchers seeking to advance 

their understanding of battery cell behaviour. It aligns with the broader trend of leveraging digital twins 

across various industries to enhance efficiency, optimise processes, and drive innovation. 

 

4.2.3 Battery operation 
 
The effective and efficient management of lithium-ion batteries is crucial for low-carbon applications, 

such as electric vehicles and grid-scale energy storage. The lifetime of these batteries is intricately tied 

to various factors, including materials, system design, and operating conditions. The complexity of 

factors affecting battery performance has made real-world control of battery systems challenging and 

recent advancements in understanding battery degradation, modelling tools, and diagnostics present 

an opportunity to overcome these challenges. In this context, there is a prospect to integrate 

knowledge about battery degradation, modelling tools, and diagnostics with emerging machine 

learning techniques. This integration aspires to the birth of the concept known as the battery digital 

twin, which involves a close interaction between the physical battery and its digital representation. The 

envisioned outcome is a battery digital twin that facilitates smarter control, ultimately allowing for a 

more intelligent and interconnected approach contributing to a potentially extended battery 

lifespan43,44,45,46. 

The successful integration of these technical developments will pave the way for a sophisticated 

battery digital twin, revolutionising the management and optimisation of batteries in diverse 

applications. Additionally, the deployment of sophisticated battery digital twin frameworks might 

enable strategies for the second use of batteries. In particular, leveraging accurate battery models, 

continuous monitoring systems, and advanced sensors, such frameworks could assess the remaining 

useful life of batteries post their primary application. For example, by integrating data from historical 

performance and employing machine learning algorithms, these models could predict the performance 

of batteries in potential second-life scenarios. Moreover, the cyber-physical integration ensures real-

time insights, enabling decision-makers to evaluate a battery's health and suitability for repurposing. 

This, of course, should imply security measures, including robust protocols for data handling, 

addressing privacy concerns associated with the battery's first-life information. Overall, by identifying 

batteries suitable for a second life, the digital twin concept helps in reducing the generation of 

electronic waste. 
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5. SOX MONITORING 
 

In the rapidly evolving landscape of energy storage, the efficient management of Lithium-Ion batteries 

(LIB), in particular for electric vehicles (EV), has emerged as a critical concern. It is paramount to 

maximise battery pack performance in real time operation, ensuring safety, optimising energy 

efficiency, while at the same time obtaining accurate assessment of the battery's health and operating 

conditions. In this regard there is a significant need for implementing State-of-Health (SoH), State-of-

Charge (SoC), State-of-Energy (SoE), State-of-Power (SoP), and the innovative concept of State-of-

Safety (SoS) monitoring tools. These terms are collectively referred to as state of X (SoX), in battery 

management systems (BMS) for the batteries of the future (see Figure 1). 

 

Figure 1: Integrating digital technology to create SoX monitoring systems for enhanced battery performance and safety. 

 

5.1 SoH/SoC/SoE/SoP monitoring 
 

SoH, the remaining capacity relative to the original capacity, stands as a key indicator in understanding 

the degradation performance of LIBs. Accurate SoH estimation is essential for prolonging battery 

lifespan and preventing unexpected failures. Traditional approaches, such as Coulomb counting [3] and 

model-based estimation, have paved the way for reliable SoH assessments but often require a full 

charge/discharge cycle, a process that can be time-consuming and lengthens the diagnostics phase. 

This is because these methods rely on capturing comprehensive data throughout the entire charging 

and discharging process to accurately assess the battery's health status. The recent introduction of 

digital twin frameworks offers a paradigm shift by enabling real-time SoH estimation without the need 

for complete discharge cycles. This capability not only enhances the accuracy of SoH assessment but 

 
[3] calculating the remaining capacity by accumulating the charge transferred in or out of the battery 
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also allows for proactive measures to be taken during ongoing cycles, minimising the risk of 

unexpected degradation. 

Both SoC, representing the current level of charge stored in the battery, and SoE, describing the 

residual energy of the battery cell under specific operating conditions, play a crucial role in 

determining the energy availability of a battery. SoP is analogous to SoC but pertains to power rather 

than charge[4], considering factors such as the current charge level, internal resistance, and the ability 

of the BMS to regulate power output. 

Effective SoC and SoE monitoring ensures optimal utilisation of the battery's capacity and energy, 

respectively and are integral for the reliable operation of devices. SoP is important in applications 

where the instantaneous power demand fluctuates rapidly, such as EVs or grid stabilisation systems. 

Maintaining an adequate SoP ensures that the system can respond quickly to changes in power 

demand without experiencing voltage drops or power delivery limitations. In this context, industrial 

internet of things IIoT-based digital twin frameworks, employing advanced data-driven approaches to 

estimate SoC/SoE/SoP in real-time, can be expected to become key enablers for technological 

advancement. This approach not only overcomes the challenges associated with complex battery 

dynamics and varying operating conditions, but could also contribute, for example, to accurate 

determination of EV range. The integration of this technology can revolutionise the efficiency of EVs 

and other applications reliant on LIBs. 

From a BMS perspective, accurately assessing SoH/SoC/SoE/SoP of LIB cells typically implies combining 

the monitoring of voltage and current signals. Practical implementations in BMS essentially fall into 

three primary categories47,48: 

• Coulomb counting methods: These methods involve a simplified analytical representation of 

the battery, using current integration to compute SoC and SOP. SoH is updated by referencing 

manufacturer datasheets. 

 

• Model-based estimation methods: In this approach, battery cell models are employed to 

deduce SoC/SoH. One widely-used model type is the one based on electrochemical models 

due to their strong abilities to capture both kinetic and charge transfers inside a battery, 

further resulting in a highly accurate SoC indication. Another model type is the equivalent 

circuit model that utilises the electrical circuit components to emulate battery dynamics. 

Online estimators or adaptive filters correct measurement errors and deviations from the 

estimation. This method enhances accuracy by leveraging predictive models. 

 

• Data-driven methods: Using an input-output approach (black-box models), this method 

employs estimators based on fuzzy controllers, neural networks, and support vector machines. 

These data-driven techniques do not rely on detailed knowledge of the battery's internal 

mechanisms and can adapt to various scenarios. 

 

These methodologies offer diverse approaches to assess battery cell states, each with its strengths and 

applications. Coulomb counting provides simplicity and reliance on manufacturer data, model-based 

estimation enhances accuracy through predictive models, and data-driven methods offer flexibility by 

 
[4] i.e. typically refers to the available power output capability of a battery at a given moment 
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utilising black-box models for estimation. The choice of the most suitable method depends on specific 

application requirements and the level of detail and adaptability needed in the assessment process.  

 

5.2 SoS monitoring 
 

Introducing the concept of SoS can further elevate the monitoring capabilities of BMS. SoS 

encapsulates the overall safety status of the battery, considering factors such as thermal stability, 

internal resistance, and the potential for catastrophic events. However, tackling real-time monitoring 

of SoS requires a holistic approach to battery data management. What sets SoS apart from other states 

is its impartial nature. Unlike SoH/SoC/SoE/SoP, which consider tailored estimators for distinct 

applications, SoS focuses solely on the possibility of a dangerous reaction at any given moment, 

quantifying the risk even when the storage system is inactive. This distinguishing feature renders SoS 

applicable to various energy storage systems beyond batteries, encompassing fuel cells and 

supercapacitors, given the identification of appropriate safety limits. 

Integrating SoS into BMS aligns seamlessly with existing charging and energy management systems 

prevalent in EV and charging stations. The ability to calculate SoS online, akin to the online estimation 

of SoC, empowers the BMS to make real-time decisions aimed at reducing the likelihood of abuse and 

potential hazards. A notable example involves a car manufacturer responding to a fire incident post-

charging by introducing a software update to mitigate unsafe charging conditions, underscoring the 

adaptability and proactive nature of SoS implementation. In hypothetical scenarios, SoS could prove 

invaluable in post-event calculations, such as after a mild EV crash. Leveraging information from 

sensors pre- or post-crash, the BMS could calculate SoS, providing critical warnings to passengers and 

first responders about imminent hazards. This potential application showcases the real-world impact 

of SoS in enhancing safety protocols and response mechanisms. 

From a practical viewpoint, a promising avenue for estimating SoS in BMS is the digitalisation of 

impedance measurements. Several methods can be envisioned: 

• Real-time monitoring with online impedance analysis: Implement real-time monitoring of 

impedance over a range of frequencies using digitalised measurements during the battery's 

operation. This continuous analysis can allow for the immediate detection of deviations from 

normal impedance levels, offering insights into aging mechanisms and signalling potential 

safety risks. 

 

• Machine learning algorithms for pattern recognition: Integrate ML algorithms that can 

analyse patterns within the digitalised impedance measurements. Train the ML model to 

recognise abnormal impedance behaviour associated with hazardous conditions, enabling the 

BMS to predict and mitigate potential safety issues. 

 

• Correlation with environmental factors: Correlate digitalised impedance measurements with 

environmental factors such as temperature and humidity. Changes in these variables can 

impact battery safety, and by integrating them into the analysis, the BMS can enhance its 

ability to estimate SoS accurately. 
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• Digital twin framework for predictive analysis: Develop a digital twin framework that 

replicates the battery's behaviour using digitalised impedance measurements and 

communicates with the physical battery. This virtual representation can undergo predictive 

analysis to simulate various operating conditions, helping the BMS anticipate safety concerns 

before they manifest in the physical battery (s. section Error! Reference source not found.). 

 

• Integration of multi-sensor data: Combine digitalised impedance measurements with data 

from other sensors within the battery system. Integrating information on voltage, current and 

temperature alongside impedance can provide a holistic view, enhancing the BMS's ability to 

estimate SoS accurately. 

 

• Advanced signal processing techniques: Apply advanced signal processing techniques to 

digitalised impedance data. Techniques such as wavelet analysis or Fourier transforms can 

extract valuable information from impedance measurements like distribution of relaxation 

times (DRT), aiding in the identification of potential safety risks and help estimating different 

aging routes that might be used to change battery management strategies to increase 

remaining useful life (RUL) 

 

• Continuous calibration and validation: Implement a continuous calibration and validation 

process for the algorithms used in digitalised impedance analysis. This ensures that the SoS 

estimation remains accurate over time, accounting for variations in battery behaviour and 

characteristics. 

 

By integrating these methods, a BMS can harness the power of digitalised impedance measurements 

to estimate SoS effectively, offering a proactive and data-driven approach to battery safety 

management. Moreover, the accuracy and reliability of SoS assessment methods can be further 

bolstered by refining its subfunctions and adjusting existing parameters. While safety limits can be 

initially chosen through empirical methods, the wealth of global battery safety tests provides an 

opportunity to incorporate more statistical data. Additionally, delving into the probabilities of failure 

for individual components, such as electrodes, separators, and electrolytes, presents avenues for 

enhancing the predictive capabilities of SoS. Crucially, the interlinked nature of SoS subfunctions, akin 

to a chain, emphasises that the overall safety is determined by the weakest or most unsafe link. This 

inherent connectivity underscores the need for comprehensive research to fortify each subfunction, 

ensuring that safety metrics decrease rapidly as necessary. 

Overall, SoS heralds a new era in battery safety management, offering a quantifiable measure of 

potential hazards independent of usage scenarios. Its digitalisation and integration into BMS promise 

a proactive approach to safety, adaptable decision-making, and enhanced response capabilities. The 

ongoing refinement of SoS through research on subfunctions and component probabilities 

underscores its potential to redefine safety standards across diverse energy storage systems. As the 

energy landscape continues to evolve, SoS stands as a beacon, illuminating the path toward safer, 

more resilient energy storage technologies.  
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6. CONCLUSION AND RECOMMENDATIONS  
 

In conclusion, the following recommendations summarise the most important topics addressed within 

this position paper and can be used as a guideline for enabling advancement in the related technology 

domains 

 

6.1 Common infrastructure, data shapes and ontologies 
 

Common data structures, 

aligned ontologies, derived 

data shapes, and generated 

interfaces are crucial for data 

space initiatives such as 

Catena-X49. These structures 

and frameworks facilitate the 

population of data spaces 

with content from a diverse 

community, enabling data 

scientists, AI/ML experts, and 

simulation experts to offer 

shared digital services based 

on interoperable data. By 

linking machine-readable knowledge with experimental data in battery data spaces, hybrid models can 

be created that incorporate statistical and physical models alongside expert knowledge. The use of a 

consistent ontology in life cycle assessment (LCA) documents for both chemical aspects at the cell level 

and the engineering/production process domain is recommended. Additionally, it is suggested to 

implement a digital passport system for battery materials and parts within the supply chain, especially 

for recycling materials. This should involve the development of a common ontology for battery 

passport and digital twins, building upon existing ontologies like BattINFO50 and BVCO51. 

 

6.2 Advanced modelling for accelerated battery development 
 

Advanced modelling and digital technologies are becoming a key asset for accelerating the battery 

development process. The advancement of battery materials through automated discovery hinges on 

a holistic approach, integrating computational predictions with experimental data to deepen our 

understanding of battery behaviour and validate models effectively. This entails aligning goals across 

academic and industrial sectors to ensure cohesive progress. Open science and collaboration are key 

drivers, advocating for transparency and efficient academia-industry partnerships. A balanced research 

approach, embracing both technology-neutral foundational research and specialised investigations, 

fosters knowledge exchange and synergy between diverse research teams. Establishing a centralised 

repository of automated methodologies, workflows, and protocols, with clear and extensive 

• Common data structures, ontologies, data shapes, and 

interfaces are crucial for Catena-X and other data space 

initiatives, enabling shared digital services.  
• Implementing a digital passport system for batteries should 

be based on Catena-X and domain ontology like BattINFO and 

BVCO. 

• Linking machine-readable knowledge with experimental data 

in battery data spaces allows for hybrid models that combine 

statistical, physical, and expert knowledge.  

• Consistent ontologies in both sustainability and materials, 

engineering and production research will enable sustainability 

by design with early feedback loops 
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documentation, will 

maximise resource 

utilisation and accessibility. 

Additionally, developing 

interoperable data 

infrastructures and 

ontologised archives will 

facilitate access to high-

quality FAIR data (findability, 

accessibility, 

interoperability, reusability), 

integrating computational 

platforms with experimental 

data for high-throughput 

calculations.  

In addressing emerging 

battery technologies and 

virtual battery testing, 

developing validated models 

and software tools for redox 

flow batteries, solid-state 

batteries, metal-air, and 

metal-sulphur systems, among other, is paramount. This includes prioritising multiphysics 

mathematical models integrated into open source computational platforms to ensure scalability and 

flexibility across battery technologies. Integrating physics-based and data-driven models with real data 

will enhance prediction capabilities and reduce complexity, costs, and time associated with physical 

testing. Standardizing battery system testing and validation approaches, focusing on the fusion of 

physical and virtual methodologies, will improve safety and reliability. For battery end-of-life (EOL) and 

recycling, developing reliable physics-based models for chemical processes involved in recycling will 

optimise efficiency, energy consumption, and CO2 emissions. Integrating modelling tools into digital 

twins of recycling plants for process control and optimisation will enhance overall efficiency and 

performance. 

AI/ML plays a crucial role, demanding the development of models that harmonise predictive power 

with physical constraints, trained on comprehensive datasets covering synthesis to testing phases. 

Moreover, exploring novel AI/ML architectures such as transformer models can enhance molecular 

modelling and property predictions. Multiscale modelling bridges simulations across various scales, 

leveraging machine learning for parameterisation and model scaling. Advancements in automated 

characterisation and synthesis are essential, requiring the refinement of high-throughput methods and 

the establishment of efficient infrastructures for sample transfer and testing. 

Finally, optimising the battery value chain necessitates bridging digital tools across all stages, from raw 

material extraction to recycling. This comprehensive approach ensures the integration of digital 

methods with traditional processes, fostering sustainability and efficiency across the entire battery 

value chain. 

• Establish a centralised repository of automated 

methodologies, workflows, and protocols with clear and 

extensive documentation. 

• Develop interoperable data infrastructures and ontologised 

archives. 

• Develop validated models and software tools for, e.g., redox 

flow batteries, solid-state batteries, metal-air, and metal-

sulphur systems, among others. 

• Prioritise multiphysics mathematical models integrated into 

open source computational platforms. 

• Integrate physics-based and data-driven models with real 

data. 

• Implement standardised battery system testing and validation 

approaches, focusing on the fusion of physical and virtual 

methodologies. 

• Develop reliable physics-based models for chemical processes 

involved in recycling. 

• Integrate modelling tools into digital twins of recycling plants 

for process control and optimization. 

• Bridge digital tools across all stages, from raw material 

extraction to recycling, to optimise the battery value chain.  
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In summary, the integrated approach outlined emphasises coordinated efforts across disciplines, 

transparent knowledge dissemination, and the strategic utilization of AI and multiscale modelling to 

drive innovation in battery material discovery. 

 

6.3 Digital twins 

 

The versatility and potential 

applications of digital twins 

across different actors have 

contributed to the absence 

of a single, comprehensive 

definition of the digital twin. 

While there are general 

understandings of what 

digital twins entail, their 

specific implementation and 

scope can vary significantly 

depending on the context 

and target. This flexibility is both a strength and a challenge, as it allows organisations to tailor digital 

twins to meet their specific needs but also makes it difficult to establish a standardised definition. 

Moreover, the evolving nature of technology and its applications is also contributing to the complexity 

of defining digital twins. As technologies advance and new possibilities emerge, the concept of digital 

twins may continue to evolve, making it challenging to pin down a static and universally applicable 

definition. In this sense it is important for stakeholders, researchers and practitioners to collaborate 

and share insights to develop a more standardised understanding of digital twins, even as the 

technology continues to evolve and find new applications.  

In any case, the seamless incorporation of digitalisation approaches in the whole battery value chain 

holds the promise of significantly reducing the overall costs of battery cells. However, there are several 

challenges that must be addressed to move towards the digitalisation: 

• First, while sensors and actuators play a crucial role in enhancing the quality of produced 

batteries and monitoring the production process, their current use is mainly limited to basic 

safety functions and defect detection. There is a need to explore and develop research 

activities focused on integrating intelligent sensors into existing production and testing 

facilities, enabling manufacturers and researchers to adopt agile methodologies and make 

real-time changes to processes and tests that can enhance battery cell performance. 

 

• Second, the interaction between physical components and the virtual data layer of the real 

asset must be integrated efficiently. This involves considering technologies for data 

acquisition, storage and processing to enable the prediction of the impact of production 

changes on battery component structure and final cell performance. 

 

• Furthermore, the vast and heterogeneous data generated in any point of the battery value 

chain poses a challenge for data storage, processing, and interoperability. Tools to support the 

• A sophisticated battery digital twin will be indispensable across 
the entire battery value chain.  

• These transformative digital twins will revolutionise battery 
management and optimisation across diverse applications, 
spanning from initial conception and manufacturing to testing 
stages and final usage.  

• Overcoming challenges such as the lack of standards, models, 
interoperability issues, and efficiently integrating real-time data 
into a centralised data warehouse, digital twins will serve as a 
cornerstone for accelerating battery development, reducing 
cost, and promoting environmental sustainability. 
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interoperability of battery manufacturing data and models used in digital twins are essential 

for seamless integration and simulation across different processes and equipment. 

 

• Lessons learned from other industries, such as automotive and machining sectors, should be 

implemented in the battery field to encourage the use of common languages, interfaces, and 

protocols. In this sense standardised communication protocols and intelligent sensor systems 

will facilitate data use and exchange. 

 

• Certainly, a crucial aspect in leveraging digital models as diagnostic tools and decision-making 

support tools lies in defining clear interactions and information exchange between different 

types of models, including high fidelity and low fidelity models. This necessitates the selection 

of suitable strategies for coupling and synchronizing these models, which presents a new 

challenge in achieving the aim of digital models effectively highlighting real-world 

circumstances. 

All in all, overcoming the challenges associated with digitalisation in battery value chain will lead to 

the creation of a truly connected and intelligent environment. In such a scenario, the digital twin will 

play a pivotal role by accurately replicating physical assets and processes in the digital realm. This 

virtual representation will enable more effective monitoring, optimisation, and prediction of the 

corresponding physical battery chain throughout its lifecycle. 

 

6.4 SoX monitoring 

 

The implementation of SoX monitoring tools represents a crucial advancement in the field of battery 

management. The integration of real-time SoH, SoC, SoE, SoP, and SoS digital monitoring, facilitated 

by innovative physics-based and data-driven approaches embedded into digital twin frameworks, 

offers a comprehensive solution for the challenges posed by dynamic operating conditions and 

varying states of charge. As LIBs continue to dominate energy storage in commercial, industrial, and 

EV applications, harnessing the power of SoX monitoring tools into intelligent BMS is essential for 

unlocking their full potential, ensuring safety, and ushering in a new era of efficient and sustainable 

energy utilisation. Overall, employing intelligent BMSs for safe operation and optimal lifespan, 

coupled with an appropriate battery model, enables optimisation in battery design and use, including 

battery operating system components such as thermal management systems, protections, and 

electric drivers. 
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6.5 General remarks on digitalisation 
 

The process of digital transformation frequently challenges organizations to venture beyond their 

familiar territories, compelling them to make strategic decisions for an uncertain future. In this context, 

the following actions are recommended to foster digital awareness within organisations undergoing 

digital transformation: 

• Enhancing data acquisition and analysis: To improve accuracy and reliability in battery 

assessment, consider investing in robust data acquisition systems and analysis tools. This will 

enable more precise Coulomb counting and model-based estimation, leading to better 

decision-making regarding battery management. 

• Integration of machine learning techniques: Explore the integration of machine learning 

techniques into data-driven methods for battery estimation. This could involve developing or 

utilising advanced algorithms to extract insights from complex data sets, thus enhancing 

flexibility and adaptability in battery assessment. 

• Continuous monitoring and optimisation: Implement continuous monitoring of battery 

performance and condition, coupled with real-time optimisation strategies. Intelligent BMS 

systems can play a crucial role here by dynamically adjusting operational parameters to 

maximise safety and lifespan while meeting performance requirements. 

• Investment in battery modelling research: Allocate resources towards research and 

development in battery modelling to refine existing models and develop new ones. This will 

contribute to more accurate predictions and optimisations in battery design and utilisation, 

especially concerning thermal management and protection systems. 

• Collaboration with battery manufacturers: Foster collaboration with battery manufacturers 

to access detailed data and insights into battery behaviour and characteristics. This 

partnership can facilitate the development of tailored estimation methods and optimisation 

strategies aligned with specific battery chemistries and designs. 

• Cybersecurity aspects: Cybersecurity at the hardware level is becoming increasingly 

important in today's interconnected world. With the rise of cyber threats and attacks, it is 

essential to take conscience and ensure the safety and privacy. By adhering to the regulations 

and guidelines set forth by the EU and other cybersecurity agencies, battery manufacturers 

can help mitigate risks and build trust. Ultimately, cybersecurity at the hardware level is not 

just a requirement, but a crucial component of building a secure and resilient intelligent BMS. 

• Regular training and skill development: Ensure that personnel involved in battery 

assessment and management receive regular training and skill development opportunities. 

This will empower them to effectively utilise the chosen assessment methods and adapt to 

evolving technologies and best practices in battery management. 
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• Begin with small-scale initiatives. 

• Participate in standardisation efforts. 

• Assume responsibility for data ownership and ethics. 

• Drive the change process and secure organizational commitment on the digital 

transformation. 
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